2

第11回11/06/20 (CS3年・荒井) ネットワークプランニング

ダイナミックルート・RIP

※本資料は授業後(数日以内)にWEBで閲覧できるようにします※

2011/06/20

第11回ネットワークプランニング11(荒井)

今日の予定

- Oダイナミックルーティング
 - □ルーティングとルーティングテーブル【復習】
 - ○ダイナミックルート(※7.6)
 - 〇ルーティングプロトコル(※(p357),7.7)
- ORIPの設定(※8.7)
 - RIPを有効にする
 - router rip
 - RIPを使うネットワークを指定する
 - network networkaddress
 - 例:教科書p437
- ●演習:3台のルータによるRIP

2011/06/20

第11回ネットワークプランニング11(荒井)

ルーティング(※7章)【復習】

- ルータ(ネットワーク層のデバイス)によって ネットワークとネットワークが接続されるが、 自ネットワークではない(リモート)ネットワー クにアクセスするための経路制御;異なるネットワーク宛のパケットを転送するためのプロセス
 - ルータの最大の役割
 - ルータはネットワークとネットワークの橋渡し
 - 何でも渡せばよいというものではなく、どのようなものをどこへ渡すか選択

2011/06/20

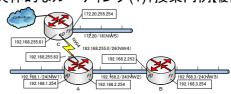
第11回ネットワークプランニング11(荒井)

スタティックとダイナミックルート の比較(※7.5,7.6)【復習】

- スタティックルート
 - 管理者:手作業。トポロジ変更があれば適宜修正
 - ルータの負荷:小さい
 - ネットワーク規模:小規模、末端NW(スタブ:ルータに対して ーヶ所だけで接続されているNW)に有効
 - セキュリティ:高い
- ダイナミックルート
 - 管理者:自動設定。但し初期設定時にはそれなりの知識 が必要
 - ルータの負荷:大きい
 - ネットワーク規模: 小~大規模に有効
 - セキュリティ:低い

2011/06/20

第11回ネットワークプランニング11(荒井)


ルーティングテーブル【復習】

- 経路情報のデータで、これを利用しルーティング先が決定される
 - 宛先NW with Netmask、Gateway, Interface/NextHop, Cost/Distance などの情報
- ルーティングテーブルの確認
 - show ip route [特権モード内]
- 有効化されているI/Fのネットワーク(直接接続されているNW)は、自動的にルーティングされる
 - ルーティングテーブルに自動的に登録される

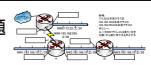
2011/06/20

第11回ネットワークプランニング11(荒井)

具体的なルーティング(1);授業内例[復習]

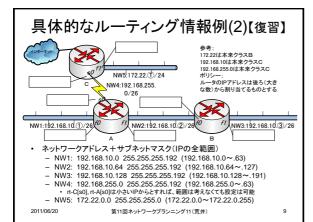
- ルータAにおけるあるべきルーティングテーブル
 - 192.168.1/24(NW1):→f0(直接)
 - 192.168.2/24(NW2):→f1(直接)
 - 192.168.255.0/26(NW4):→s0(直接)
 - $\ 192.168.3.0/24 \ (NW3) : \rightarrow 192.168.2.253 (rt\text{-B[f0]})$
 - 172.20.0.0/16 (NW5): → 192.168.255.61(rt-C[s0])

– デフォルトルート: → 192.168.255.61(rt-C[s0])


2011/06/20 第11回ネットワークプランニング11(荒井) 6

具体的なルーティング情報 (1) 授業内例題【復習】

- ルータCにおけるあるべきルーティングテーブル
 - 192.168.255.0/26(NW4):→s0(直接)
 - 172.20/16(NW5):→e1(直接)
 - 192.168.1.0/24 (NW1): → 192.168.255.62(rt-A[s0])
 - 192.168.2.0/24 (NW2): → 192.168.255.62(rt-A[s0])
 - 192.168.3.0/24 (NW3): → 192.168.255.62(rt-A[s0])
- デフォルトルート: → s1?(インターネット接続のI/F) ・ ルータBにおけるあるべきルーティングテーブル
 - 192.168.2/24(NW2):→f0(直接)
 - 192.168.3/24(NW3):→f1(直接)
 - デフォルトルート: → 192.168.2.254(rt-A[f1])
 - いわゆるスタブネットワーク(末端)なので、デフォルトルートをインターネット方向のルータに向ければよい


2011/06/20 第11回ネットワークプランニング11(荒井)

授業内演習課題

- ・まずIPの設計
 - 各NWの範囲と、機器への割り振り
 - IP全範囲の先頭と最後は、NW-ad, BC-adでルータや ホスト等の機器には割り当ててはいけない
 - サブネットマスク(10進)も
 - /26→FF.FF.FF.[1100 0000](2進)→FF.FF.FF.C0 →255.255.255.192
- 次に各ルータにおけるルーティングの明確化
 - あるべきルーティングテーブルを記述
 - ・ デフォルトルートも考慮して省略可も明確化

2011/06/20 第11回ネットワークプランニング11(荒井) 8

ダイナミックルート(※7.6)

- ルーティングプロトコルによって、自動的に経路が設定される(学習)
 - トポロジーが変更された場合でも、自動学習
 - ネットワークの追加などが行われた場合、直接関係するルータの みの設定でOK
 - 障害などによって、あるネットワークが遮断された場合、自動的に 障害のあるネットワークへのルーティングが削除
 - ルーティングプロトコルによって、決定される経路は違う
- 隣接するルータ同士がルーティング情報をやりとりし、次々と伝播させる

2011/06/20 第11回ネットワークプランニング11(荒井) 11

ルーティングの設計

- 管理するネットワーク全体のトポロジーなどにより、静的か動 的か、各ルータにおけるデフォルトルートなどを決定
 - いずれにしても各ルータにおけるあるべきルーティング情報はきちんと把握しておく必要がある
 - クライアントについて
 - ルータではない通常のノード(ホストなど)においては、最低限デフォルトルートを指定する必要がある
 - ノードによっては、動的ルートをサポートしているものもある » サーバ系のOS;Unixなどはサポート、通常のWindowsは未
 - 2つ以上のルータが存在するネットワークにおけるノードのデフォルトルート先は、どのルータを指定しても大丈夫
- 動的と静的ルーティングの両方を用いることも可能
 - ネットワークの一部範囲で使い分けることも可能
 - 一つのルータで両方を使うことも可能

2011/06/20 第11回ネットワークプランニング11(荒井) 12

14

ルーティングプロトコル (※(p357),7.7)【参考】

- IGP (Interior Gateway Protocols)
 - 自律システム(AS: Autonomous System)内で使用する ルーティングプロトコル
 - RIP, OSPF, IGRP, EIGRP などがある
 - RIPは小規模、OSPFは大規模、後者二つはCisco特有
- EGP (Exterior Gateway Protocols)
 - 自律システム(AS: Autonomous System)間で使用する ルーティングプロトコル
 - BGP4, EGP などがある
 - BGP4はインターネットで標準的に使われている

2011/06/20

第11回ネットワークプランニング11(荒井)

13

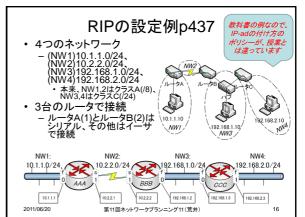
15

$RIP(\times 8.7)$

- 小規模なネットワークに有効な動的制御プロトコルで、 ディスタンスベクター型アルゴリズム
 - ホップ数を距離として最適経路を決定
 - ・ 速さなどには無関係
 - 15以上のホップは不可能
 - ・ 単純に言うとルータが15個以上のNW規模では利用不可能
 - アップデート(情報伝達)は30秒間隔
 - サブネットマスクの情報は伝達されない
 - <u>クラスフルネットワークで設定</u>する必要がある
- v1とv2がある
 - v2では、VLSMを扱える、アドバタイズ(伝達)がブロード キャストではなくマルチキャスト
 - ここではv1を使用するものとする

2011/06/20

第11回ネットワークプランニング11(荒井)


RIPの設定(※p435)

- 個々のルータでRIPを使用するためには次の2つの設定
- RIPを有効にする
- router rip [confモード内]
 - →router-confモードに移行
- RIPを使うネットワークを指定する
 - network network-address [router-confモード内] network-addressには他のルータに伝えるべき(クラスフル)ネットワークを全て個々に指定
 - つまり**「そのルータが接続しているネットワーク」を指定**する

 - サブネットマスクは指定しないことに注意(クラスフル)
- RIPの解除
 - no router rip [confモード内]
 - アドバタイズネットワークの削除
 - no network network-address [router-confモード内]

2011/06/20

第11回ネットワークプランニング11(荒井)

RIPの設定例p437

- ルーティングを設定していない場合、例えばNW1からNW3へ 疎通できない
- ルータ1(A)におけるRIP設定
 - router rip [#RIPを動作させ、RIP-confモードへ移行]
 - network 10.0.0.0 [#RIPに乗せるネットワークアドレス] 「network 10.1.1.0」と「network 10.2.2.0」としてもエラーにはならず 上記と同じ意味として受け付けてくれるが、上記が正しい
 - ニュニー・シェット・フェア・ファファンスにかけませい。 RIPではサブネットワークを指定することはできず、クラスフルネット ワーク(サブネット化する前のネットワーク)を指定しなければいけない。
- ルータ2(B); router ripをした上で、
 - network 10.0.0.0
 - network 192.168.1.0
- ・ ルータ3(C); router ripをし、
 - network 192.168.1.0
- network 192.168.2.0

RIPの確認(※p439-446)

- show running-config [p440参照]
 - 全ての設定情報の中で、[router rip][network xx.xx.xx]が設定されているかを確認
- show ip protocols [p442参照]
 - RIPプロトコルが有効になっていて、伝搬すべきネット ワークアドレスを確認
- show ip route
 - ルーティングテーブルの確認
 - 伝搬されてきた情報も正しく載ってきているか
 - サブネットは集約され、クラスフル(本来のクラスのまま)としてテーブルに載る
- debug ip rip (特権モード内)[p443参照]
 - ripにより情報が伝搬している様子がわかる

第11回ネットワークプランニング11(荒井) 2011/06/20 18

2011/06/20

演習:RIPによるネットワーク構築

- サブネット化したネットワーク4つを3台のルータで イーサ接続し、RIPによるルーティングで、ネットワー クを正しく動作させよう!
- 対象とするネットワークは、
 - (NW1)192.168.10.1/27,
 - (NW2)192.168.10.2/27
 - (NW3)172.16.5/24,
 - (NW4)172.16.6/24
 - ・(1)(2)は本来クラスC(/24)、(3)(4)は本来クラスB(/16)
 - 各ネットワークはスイッチ(1900)(4台)とし、各SWにはホストを1台づつ(計4台)設置するものとする
 - ルータ3台により全てEtherで接続
 - 各ルータにおけるデフォルトルートはなしとする

2011/06/20

第11回ネットワークプランニング11(荒井)

19

演習;IPの設計と構築 経路制御表を想定し、IPを設計して、NVで構築 IP-ad割り振りポリシーはいつもの授業と同じとする (ホストは小さい方から、ルータは大きい方から) NW3: 172.16.(5) 192 168 10 ① 192 168 10 ② ※上図のIPアドレスは全く違っています 2011/06/20 20 第11回ネットワークプランニング11(荒井)

演習:RIPの設定

- まず各ルータにてあるべき設定後のルーティング テーブルを!⇒★提出物1(紙)※これを先に!
- 各種設定
 - IFの有効化やIPアドレスなどをきちんと設定
 - ・ルータでは show running-config、ホストではIP Configで確認しよう
- RIPの設定
 - 各ルータにおいて適切にRIPを設定しよう
 - show ip route などで確認しよう
 - サブネットのRIPの場合、ルーティングテー -ブルには、集約さ れた(サブネット毎ではなくクラスフルネットワーク)経路情報 が載ってくることに注意しよう

2011/06/20

第11回ネットワークプランニング11(荒井)

演習:ネットワークの動作確認

- 動作確認
 - ルータの設定情報だけでなく、動作しているルー ティングプロトコル、現在のルーティングテーブル を表示して確認
 - RIPは30秒毎に情報が伝播され、すぐに全てのルータ が自動設定されるわけではないことに注意
 - ping, tracert(traceroute)などで確認
 - 例えばホストAからホストDへなど、基本的には全てで 確認すること

22

2011/06/20

第11回ネットワークプランニング11(荒井)

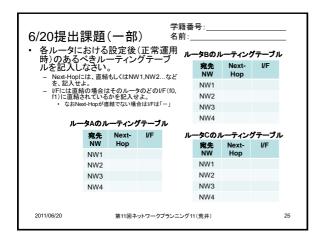
演習:保存と提出

- あるべきルーティングテーブルの紙の提出
 - ※これができてから以下のNVを!
- 完成した(NVの)ネットワークを保存
 - ・ファイル名は「**学籍番号**-0620」とする
 - 完成していなくても(きちんと動作していなくても)、保存してください。
- ・ ネットワークフォルダ (weekly)に、保存したファ イルを提出
 - · 完成していなくても(きちんと動作していなくても)取りかかれた人は提出してください。
 - 但し、あるべきルーティングテーブルができてなければ提出しないでください。

23

設計した用紙(配布資料)は提出の必要はありません。 きちんと復習して確認しておいてください。

第11回ネットワークプランニング11(荒井) 2011/06/20


今日のまとめ

- Oダイナミックルーティング
 - □ルーティングとルーティングテーブル【復習】
 - ○ダイナミックルート(※7.6)
 - Oルーティングプロトコル(※(p357),7.7)
- ORIPの設定(※8.7)
 - RIPを有効にする
 - router rip
 - RIPを使うネットワークを指定する
 - · network networkaddress
 - 例;教科書p437
- ●演習:3台のルータによるRIP

2011/06/20

第11回ネットワークプランニング11(荒井) 24

ダイナミックルート・RIP

